This paper presents a novel contour tracking scheme based on a well-posed kinematic representation of differential-driven nonholonomic mobile robots. Firstly, a fuzzy aggregation of spatial sets in cluttered environments allows designing a velocity field to encode the desired velocity vector pointing to the target (the contour). Thus, the resultant smooth trajectory avoids obstacles by combining spatially distributed velocity fields that enable the robot navigation. Finally, the universal approximation property of fuzzy systems facilitates the design of an adaptive PI-like controller, whose closed-loop stability leads to the precise tracking of the velocity field. The results of the performed numerical simulations illustrate the reliability of the proposed scheme.
Adaptive Mobile Robotics Pdf Download
Abstract:Mobile robots have played a vital role in the transportation industries, service robotics, and autonomous vehicles over the past decades. The development of robust tracking controllers has made mobile robots a powerful tool that can replace humans in industrial work. However, most of the traditional controller updates are time-based and triggered at every predetermined time interval, which requires high communication bandwidth. Therefore, an event-triggered control scheme is essential to release the redundant data transmission. This paper presents a novel parameter-adaptive event-trigger sliding mode to control a two-wheeled mobile robot. The adaptive control scheme ensures that the mobile robot system can be controlled accurately without the knowledge of physical parameters. Meanwhile, the event trigger sliding approach guarantees the system robustness and reduces resource usage. A simulation in MATLAB and an experiment are carried out to validate the efficiency of the proposed controller.Keywords: event-triggered; mobile robot; sliding mode control; adaptive control
Dynamic locomotion is realized through a simultaneous integration of adaptability and optimality. This article proposes a neuro-cognitive model for a multi-legged locomotion robot that can seamlessly integrate multi-modal sensing, ecological perception, and cognition through the coordination of interoceptive and exteroceptive sensory information. Importantly, cognitive models can be discussed as micro-, meso-, and macro-scopic; these concepts correspond to sensing, perception, and cognition; and short-, medium-, and long-term adaptation (in terms of ecological psychology). The proposed neuro-cognitive model integrates these intelligent functions from a multi-scopic point of view. Macroscopic-level presents an attention mechanism with short-term adaptive locomotion control conducted by a lower-level sensorimotor coordination-based model. Macrosopic-level serves environmental cognitive map featuring higher-level behavior planning. Mesoscopic level shows integration between the microscopic and macroscopic approaches, enabling the model to reconstruct a map and conduct localization using bottom-up facial environmental information and top-down map information, generating intention towards the ultimate goal at the macroscopic level. The experiments demonstrated that adaptability and optimality of multi-legged locomotion could be achieved using the proposed multi-scale neuro-cognitive model, from short to long-term adaptation, with efficient computational usage. Future research directions can be implemented not only in robotics contexts but also in the context of interdisciplinary studies incorporating cognitive science and ecological psychology. 2ff7e9595c
Comments